

End Mill Training

NACHI Three Key Elements of a Cutting Tool

- 3 Elements Needed in a Good Cutting Tool
- Well Balanced For Best Performance

ΝΔΟΗί

End Mill Terms

- A Mill Size or Cutting Diameter
- B Shank Diameter
- C Length of Cut or Flute Length
- D Overall Length

End Mill Terms Continued

NΔCH

End Mill Side Clearance

- Primary (1st angle, 5° 9°)
 - Relief Adjacent to Cutting Edge
- Secondary (2nd angle, 14° -17°)
 - Relief Adjacent to Primary Angle
- Tertiary (3rd)

ΝΛΓΗ

- Additional Relief Provided Adjacent to the Secondary
- High Performance End Mills

End Mill End Clearance

• Dish Angle

ΝΛ

- Angle Between End of Cutting Edge and Perpendicular to the Cutter Axis
- Dish Ensures a flat Surface is
 Produced
- Gash (Notch)
 - Secondary Cuts to Provide Chip Space at Corners and Ends
 - Forming the End Cutting Edge when Feeding Axially
- Gash Angle
 - Relief Angle of the Gash Feature

ΝΔCΗί

End Mill Flutes

- Evacuate Chips
 - Outward
 - Not Upward like a Drill
- Two or More Flutes
- Usually Spiral Helix Shape

- Low Helix 10-20°
 - Harder Material 35 HRC +

• Normal (GP) Helix 28-30°

- High Helix 40° +
 - Stringy Chips

Chip Pocket and # Teeth

Less No. of tooth=better chip ejection,less rigidity

NΔCH

More No. of tooth=worse chip ejection, high rigidity

Four flutes end mill is not suitable for spot facing

End Cutting Edge Types

Square type

ΝΔCΗ

Radius type

Rounded corner

Corner radius

Ball nosed type

Radius of ball nose

Chamfer type

Chamfer

Cutting Edge Type

Center cut tooth

Two Flutes

Two Flutes(Long & Short Teeth) Three Flutes

utes Fou

Four Flutes I

Four Flutes(Long & Short Teeth)

Six Flutes

Center hole tooth

Two Flutes

Three Flutes

Four Flutes

Six Flutes

End Mill Web Thinning

- The Web is Non-Cutting
- Consume Power and Torque to PLow Through the Work
- Thinning Reduces These
- Thinned Using Gash

Back Taper

- Ø is Tapered Towards the Shank
- Aids in Plunging/Drilling

ΝΔ

• Compensate for Deflection

NACHi =

Visual Index

Pg. 8 & 9

$\overline{)}$	Mark	Explanation		Mark	Explanation		
Coating	G	G (TiN) Coating	Flutes of D	N	Normal Helix Flutes $\sim 30^{\circ}$		
	ទ	UG (TiCN multi layer) Coating		ĨH	High Helix Flutes 40° - 45°		
	S	SG (TiCN multi layer) Coating	ills.	Ľ	Low Helix Flutes $15^{\circ} - 20^{\circ}$		
	AG	AG (TiAIN multi layer) Coating			Point Angle of Drills		
	AQ	AQ (TiAIN multi layer) Coating	R	Ψ.	Drill Length is from Center Point		
	X's	X's (TiAIN multi layer) Coating	Dimens	ß	Drill Length is from Corner Point		
	GS	GS (TiAIN multi layer) Coating	sion		Oil-hole Drills		
	DLC	DLC Coating		SFLUTE	Three Flutes Drills		
	DIA	Diamond Coating	듁	ŝ	Shape of Lip Relief is Conical		
	HSS	High Speed Steels	Relief of	₽	Shape of Lip Relief is Two Rake		
	HSS Co	Cobalt High Speed Steels	Drills	₩ 4	Shape of Lip Relief is Three Rake		
	FMX	Fine Melting HSS		ţ∕⊅į	S-type Thinning		
Tool M	FAX	High Grade Powder HSS		₹¢	Notch Thinning		
Aateria is	×.	Vanadium HSS		۶.	X-turne Thinning		
	HSSE47	Vanadium HSS	Thinning	2	x-ype mining		
	HSSE	Cobalt/Vanadium HSS	g of Drills	ŝ	XH-type Thinning		
		Tungsten Carbide		₹	2Rake Relief & X-type Thinning		
				ţ A	2Rake Relief & XR-type Thinning		
				¶ ∳ ∱	3 Flutes Drills & 3F-type Thinning		

	Mark	Explanation		Mark	Explanation
	js6	Tolerance of Drills Diameter is js6	_	∰	4 Flutes Radius End mills (Center Cut)
	h7	Tolerance of Drills Diameter is h7	Plutes of	Ø	2 Flutes Ball Nose End mills (Center Cut)
	h8	Tolerance of Drills Diameter is h8	End MII	%	4 Flutes Ball Nose End mills (Center Cut)
		Sharp corner Type End mills	s	*	6 Flutes Ball Nose End mills (Center Cut)
	Ø	2 Flutes Square End mills (Center Cut)	Type o	\Diamond	Cutting Taps
	8	3 Flutes Square End mills (Center Cut)	f Taps	\bigcirc	Forming Taps
		4 Flutes Square End mills (Center Cut)	Flutes of Taps	ST.	Straight Flutes Taps
	\$	4 Flutes Square for X's-mill Hard (Center Cut)		≸ SP	Spiral Pointed Taps
	\$	5 Flutes Square End mills (Center Cut)		NH.	Normal Helix Flutes Taps
	÷	6 Flutes Square End mills (Center Cut)		Ë	High Helix Flutes Taps
	æ	6 Flutes Square for X's-mill Hard & X's-mill Multi Flutes (Center Cut)		Ë	Low Helix Flutes Taps
	*	8 Flutes Square for X's-mill Hard & X's-mill Multi Flutes (Center Cut)		MB	Chamfer Length is 2.5P to 3P
	₽	4 Flutes Square End mills (with Center Hole)	Chamfer of Taps		Chamfer Length is 4P to 5P (for through hole)
	Ó	5 Flutes Square End mills (with Center Hole)			Chamfer Length is 1.5P (for blind hole)
	Ŷ	6 Flutes Square End mills (with Center Hole)		2.52	Chamfer Length is 2.5P
	Ċ,	Multiple Flutes (over 8) Square End mills (with Center Hole)		152 0000	Chamfer Length is 3.5P
	€	2 Flutes Radius End mills (Center Cut)		TAPER HPE	Cutting Taps for Taper Pipe

Endmills / Visual Index

NΔCH

NACHI End Mill Diameter Tolerance Pg. 210

NACHI CNC TOLERANCE (Cutting Diameter)

	+.0 0	0 0010			
List No.	Tool No.	List No.	Tool No.	List No.	Tool No.
6201 6203	PF PFL	6233 6367	PGE PK PKP PKX PHP	6230 6290	MPG MPR
6207 6210	PFX HPF PFC PFCX PFLC PG PGX	6367P 6367X 7221P		±.0040	
6211M				6303	PQ
6211X 6213 6231		0 -0.0	015	6303P 6303X 6304 6305 6307	PQP PQX MPQ PQA PQF
6231X		6261 6295	PC PRR		

*Some items, present stock until depleted.

Nachi End mill Materials

- <u>HSS</u> = High Speed Steel
- General Purpose
- Symbol= HSS

ΝΛCΗ

EX's – L231, L261, L211, L215, & L271

- <u>HSSCo</u> = Cobalt High Speed Steel
- HSS With Added Cobalt for Wear Resistance
- Symbol=

EX's – L6231HD, L6450, L6485, L6406, L6484, L6486, L6488, L6403, L6402, L6404, L6231X, L6211X, L6367X, L6303X, L6231, L6233, L6230, L6213, L6210, L6211M, 6367, L6303, & L6307

Nachi Materials

- <u>Carbide</u> = Tungsten Carbide
- Compacted & Sintered 3 X Stiffer than Steel
- Symbol=

EX's – L9382, L9384, L9386, L9398,

L9422, L9399, L9423, L9408, L9321, L9322,

L9324, L9338, L9366, L9368, L9340, L9332, L9330,

L9378, L9302, L9390, L9360, L9261X, L9265X, L9271X,

L9275X, L9263X, L9267X, L9273X, L9277X, L9251X, & L9221X

Coatings Advantages

- Better Wear Resistance
- Better Toughness

ΝΛ

- Better Heat Resistance
- Better Lubrication

NACHI Coatings Development and Approx. Temperature Max

Coating Technology								
Hardened Steels 50HRC~					CBN	Hybrid		
Hardened Steels 40HRC~	TIC			TiAIN Multilayered Coating AG Coat 900° C	TiAIN Multifunctional Multilayer Composite Film Aqua Coat Dual Coat GS Hard Coat	Surface Modification + Multi-element		
Carbon Steels Cast Irons		TiN+TiC TICN	TiCN Multi Coating Platina Coa SG Coat	layered TiCN Multilayered Coating at UG Coat 700° C	12-1300° C Hybrid Surface Modification + Rigid Film	& Multilayer Film		
		TIN G Coat 600°	С					
Generation	.80	'85	.90	'95	.00.	05		
Constation	Coating T	echnology Creation	Compound	Aultilayer Increase of Film	Hybrid			

Nachi Coatings

- <u>SG-Coating</u> = TiN + TiCN (Multi Layer Coating)
- Service Temperature= 700° C
- Color= Gold YelLow
- Symbol= SCEX – L9261X, L9265X, L9271X, L9275X, L9263X, L9267X,

L9273X, L9277X, L9251X, L9221X, L6231X, L6211X, L6367X, & L6303X

- <u>AG-Coating</u> = TiALN (Multi Layer Coating)
- Service Temperature= 900° C
- Color= Violet-Gray
- Symbol= AG

EX – L6485, L6406, L6484,

L6486, L6488, L6403, L6402, & L6404

Nachi Coatings

- <u>X's-Coating</u> = TiALN (Multi Layer Coating) for End Mills
- Service Temperature= 900° C
- Color= Violet-Gray
- Symbol= X's

NΔCH

EX – L9408, L9321, L9322,

L9324, L9338, L9366, L9368, L9340, & L9332

- <u>GS-Coating</u> = TiALN + Al-Ti-Cr (Multi Layer Coating)
- Service Temperature= 1100° C
- Color= Violet-gray
- Symbol=GS

EX – L9382, L9384, L9386,

L9398, L9422, L9399, & L9423

Nachi Coatings

- <u>DLC-Coating</u> = Diamond Like Carbon
- Service Temperature= 600° C
- Color= Black

ΝΔCΗ

• Symbol=DLC

EX – L9330, L9378, L9302, L9390, L9360, L6231HD, & L6450