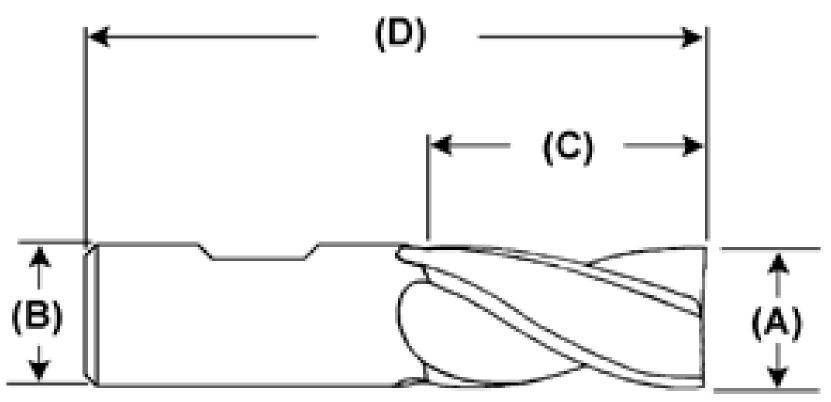


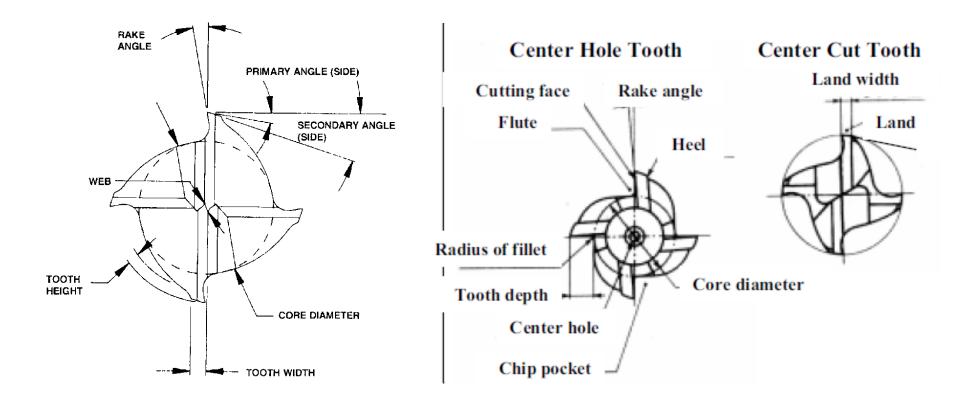
End Mill Training

NACHI Three Key Elements of a Cutting Tool



- 3 Elements Needed in a Good Cutting Tool
- Well Balanced For Best Performance
- Only Good as the Weakest Link

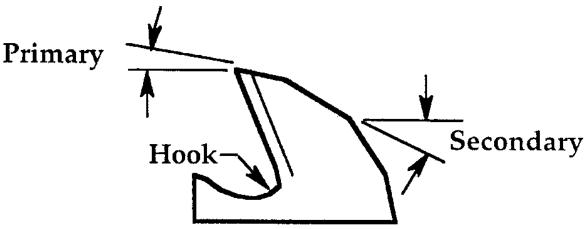
ΝΔΟΗί


End Mill Terms

- A Mill Size or Cutting Diameter
- **B** Shank Diameter
- C Length of Cut or Flute Length
- D Overall Length

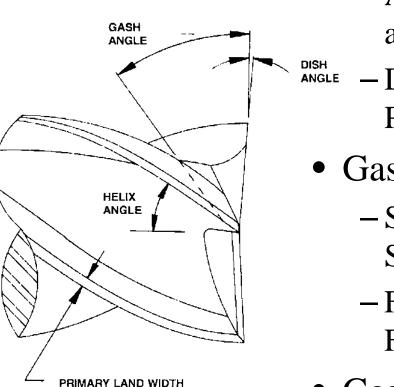
End Mill Terms Continued

NΔCH



End Mill Side Clearance

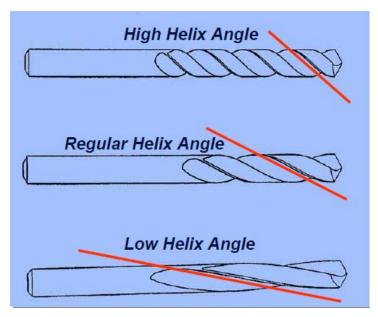
- Primary (1st angle, 5° 9°)
 - Relief Adjacent to Cutting Edge
- Secondary (2nd angle, 14° -17°)
 - Relief Adjacent to Primary Angle
- Tertiary (3rd)


ΝΛΓΗ

- Additional Relief Provided Adjacent to the Secondary
- High Performance End Mills

End Mill End Clearance

• Dish Angle


ΝΛ

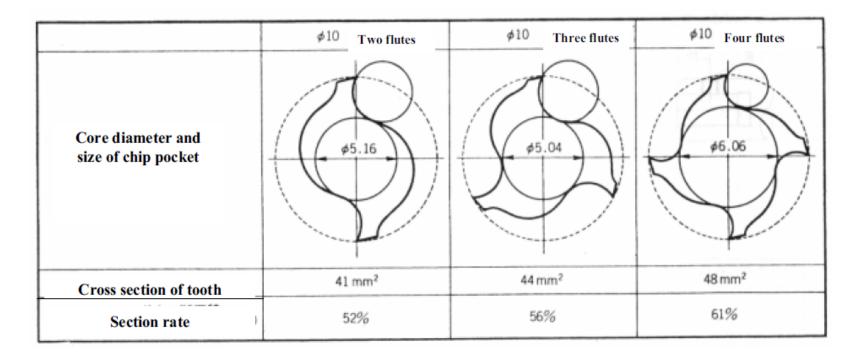
- Angle Between End of Cutting Edge and Perpendicular to the Cutter Axis
- Dish Ensures a flat Surface is
 Produced
- Gash (Notch)
 - Secondary Cuts to Provide Chip Space at Corners and Ends
 - Forming the End Cutting Edge when Feeding Axially
- Gash Angle
 - Relief Angle of the Gash Feature

ΝΔΟΗί

End Mill Flutes

- Evacuate Chips
 - Outward
 - Not Upward like a Drill
- Two or More Flutes
- Usually Spiral Helix Shape

- Low Helix 10-20°
 - Harder Material 35 HRC +


 Normal (GP) Helix 28-30°

High Helix 40° +
Stringy Chips

Chip Pocket and # Teeth

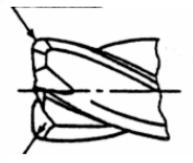
Less No. of tooth=better chip ejection,less rigidity

NΔCH

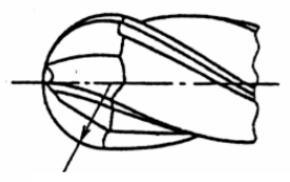
More No. of tooth=worse chip ejection, high rigidity

Four flutes end mill is not suitable for spot facing

End Cutting Edge Types

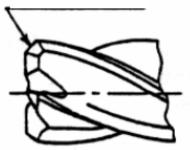

Square type

ΝΔCΗ


Radius type

Rounded corner

∠ Corner radius


Ball nosed type

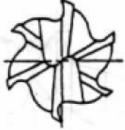
Radius of ball nose

Chamfer type

Chamfer

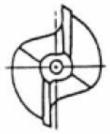
Cutting Edge Type

Center cut tooth



Two Flutes

Two Flutes(Long & Short Teeth) Three Flutes


Four F

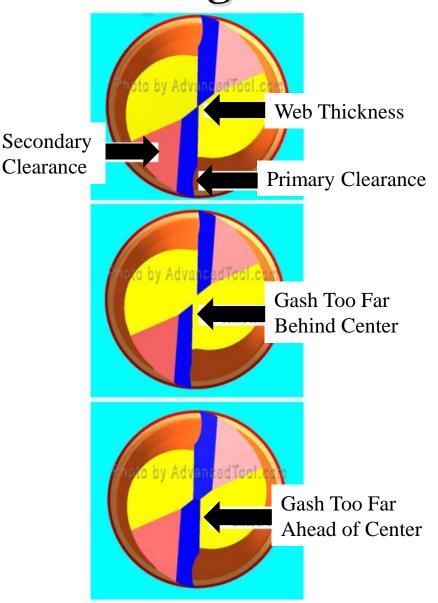
Four Flutes Fo

Four Flutes(Long & Short Teeth)

Six Flutes

Center hole tooth

Two Flutes

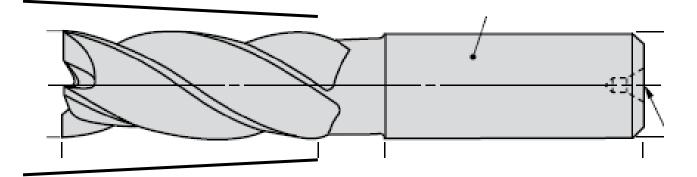

Three Flutes

Four Flutes

Six Flutes

End Mill Web Thinning

- The Web is Non-Cutting
- Consume Power and Torque to PLow Through the Work
- Thinning Reduces These
- Thinned Using Gash



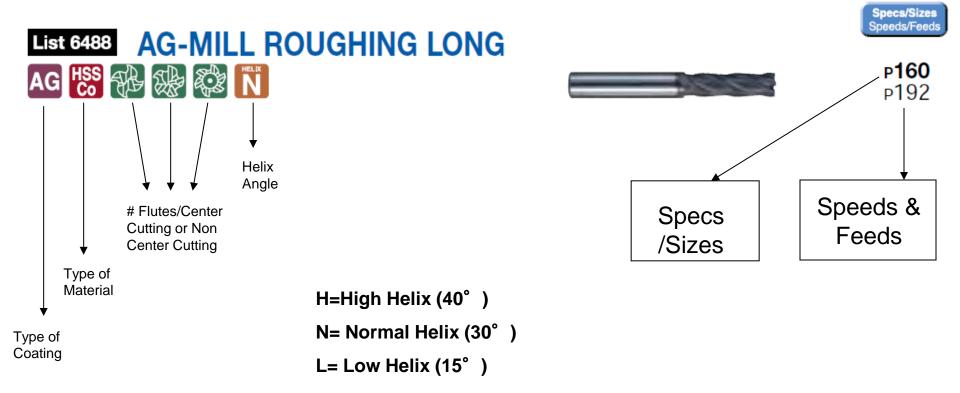
Back Taper

- Ø is Tapered Towards the Shank
- Aids in Plunging/Drilling

ΝΔ

• Compensate for Deflection

Visual Index


Pg. 8 & 9

	Mark	Explanation	/	Mark	Explanation				
	G	G (TiN) Coating	Flu	N	Normal Helix Flutes ~ 30°				
	G	UG (TiCN multi layer) Coating	Flutes of Drills	Ĩ	High Helix Flutes 40° - 45°				
	SG	SG (TiCN multi layer) Coating	riis	Ľ	Low Helix Flutes 15° - 20°				
	AG	AG (TiAIN multi layer) Coating		***	Point Angle of Drills				
Coating	AQ	AQ (TiAIN multi layer) Coating	R	ß	Drill Length is from Center Point				
	X's	X's (TiAIN multi layer) Coating	Drill Dimension	Ø	Drill Length is from Corner Point				
	GS	GS (TiAIN multi layer) Coating	ŝ	A	Oil-hole Drills				
	DLC	DLC Coating		\$FLVTE	Three Flutes Drills				
	DIA	Diamond Coating	ЦрГ	\$	Shape of Lip Relief is Conical				
	HSS	High Speed Steels	Lip Relief of I	₽	Shape of Lip Relief is Two Rake				
Tool Materia b	HSS Co	Cobalt High Speed Steels	Drills	÷	Shape of Lip Relief is Three Rake				
	FMX	Fine Melting HSS	Thirning of Drills	\$	S-type Thinning				
	FAX	High Grade Powder HSS		₹	Notch Thinning				
atoria is	Ø	Vanadium HSS		\$	X-type Thinning				
	H\$\$5-4	Vanadium HSS		<mark>يم</mark> ک					
	HSSE	Cobalt/Vanadium HSS		8	XH-type Thinning				
	JANNA	Tungsten Carbide		Image: A start	2Rake Relief & X-type Thinning				
				¦́4⊽	2Rake Relief & XR-type Thinning				
				<pre>B</pre>	3 Flutes Drills & 3F-type Thinning				

	Mark	Evaluation		Mark	Evaluation
>	Mark	Explanation		Mark	Explanation
Toleran	js6	Tolerance of Drills Diameter is js6	_	₿	4 Flutes Radius End mills (Center Cut)
Tolerance of Drills Dia.	h7	Tolerance of Drills Diameter is h7	Flutes of	Ø	2 Flutes Ball Nose End mills (Center Cut)
lls Dia.	h8	Tolerance of Drills Diameter is h8	End Mills	% }	4 Flutes Ball Nose End mills (Center Cut)
		Sharp corner Type End mills	s	8	6 Flutes Ball Nose End mills (Center Cut)
	\mathfrak{G}	2 Flutes Square End mills (Center Cut)	Type of	$\langle \! \! $	Cutting Taps
	æ	3 Flutes Square End mills (Center Cut)	if Taps	\bigcirc	Forming Taps
	붆	4 Flutes Square End mills (Center Cut)		ST 8	Straight Flutes Taps
	€₿	4 Flutes Square for X's-mill Hard (Center Cut)	F	s# SP	Spiral Pointed Taps
	8	5 Flutes Square End mills (Center Cut)	Flutes of Ta	NH	Normal Helix Flutes Taps
lutes of	震	6 Flutes Square End mills (Center Cut)	sdel	₩	High Helix Flutes Taps
Flutes of End Mile	8	6 Flutes Square for X's-mill Hard & X's-mill Multi Flutes (Center Cut)		Ľ	Low Helix Flutes Taps
n		8 Flutes Square for X's-mill Hard & X's-mill Multi Flutes (Center Cut)		MB	Chamfer Length is 2.5P to 3P
	촪	4 Flutes Square End mills (with Center Hole)			Chamfer Length is 4P to 5P (for through hole)
	٩	5 Flutes Square End mills (with Center Hole)	Chamfer		Chamfer Length is 1.5P (for blind hole)
-	¢,	6 Flutes Square End mills (with Center Hole)	r of Taps	200	Chamfer Length is 2.5P
	Ċ,	Multiple Flutes (over 8) Square End mills (with Center Hole)		452	Chamfer Length is 3.5P
	€	2 Flutes Radius End mills (Center Cut)		TAPER THE	Cutting Taps for Taper Pipe

Endmills / Visual Index

NΔCH

NACHI End Mill Diameter Tolerance Pg. 210

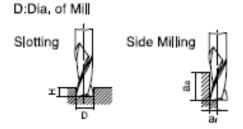
NACHI CNC TOLERANCE (Cutting Diameter)

	+.0 0	0 0010					
List No.	Tool No.	List No.	Tool No.	List No.	Tool No.		
6201 6203			PGE PK	6230 6290	MPG MPR		
6207 6210	PFX HPF PFC	6367P 6367X	PKP PKX	±.0040			
6211M		7221P	PHP	6303	PQ		
6211X 6213 6231	PFCX PFLC PG	0 -0.0	015	6303P 6303X 6304	PQP PQX MPQ		
6231X	PGX	6261 6295	PC PRR	6305 6307	PQA PQF		

*Some items, present stock until depleted.

NACHI Specs/Sizes EX 9263X & 9267X

L9263X	L9273X	Diameter of Mill	Shank Diameter	Length of Cut	Number of Flutes	Overall Length
CFX4	CRFX4	1/8	1/8	1/2	4	1 1/2
CFX6	CRFX6	3/16	3/16	5/8	4	2
CFX8	CRFX8	1/4	1/4	3/4	4	2 1/2
CFX10	CRFX10	5/16	5/16	13/16	4	2 1/2
CFX12	CRFX12	3/8	3/8	1	4	2 1/2
CFX14	CRFX14	7/16	7/16	1	4	2 3/4
CFX16	CRFX16	1/2	1/2	1	4	3
CFX20	CRFX20	5/8	5/8	1 1/4	4	3 1/2
CFX24	CRFX24	3/4	3/4	1 1/2	4	4
CFX32	CRFX32	1	1	1 1/2	4	4


NΔCHi

Speeds/Feeds EX 9263X & 9267X

Work Material Milling		Carbon Steels Alloy Steels (up to 30HRc) 30~45HRc		Tool Steels 45~55HRC		Cast Iron (up to 200HB)		Cast Iron (200HB~)		Stainless Steels		Titanium A ll oys		Aluminum, Nonferrows Metals			
Conditions	、	200	SFM	150	SFM	100	SFM	220	SFM	160	SFM	140	SFM	140	SFM	590	SFM
Dia. of Mill (inch)	Dia. of Mill (inch)		Feed (IPM)	RPM	Feed (IPM)	RPM	Feed (IPM)	RPM	Feed (IPM)	RPM	Feed (IPM)		Feed (IPM)	RPM	Feed (IPM)	RPM	Feed (IPM)
1/8		6,110	19.6	4,580	9.2	3,060	6.1	6,720	32.3	4,890	9.8	4,280	10.3	4,280	8.6	18,300	51 . 2
3/16		4,070	16.3	3,060	7.3	2,040	4.9	4,480	26.9	3,260	7.8	2,850	8.0	2,850	6.8	12,200	39.0
1/4		3,060	14.7	2,290	6.4	1,530	4.3	3,360	24.2	2,450	6.9	2,140	6.8	2,140	6.0	9,100	32.8
5/16		2,440	12.7	1,820	5.8	1,220	3,9	2,690	23.7	1,960	6.3	1,700	6.1	1,700	5.4	7,300	29.2
3/8		2,030	12.2	1,540	5.5	1,020	3.7	2,240	22.4	1,620	5.8	1,420	5.7	1,420	5.1	6,100	26.8
7/16		1,740	12.5	1,300	5.2	870	3.5	1,920	21.5	1,400	5.6	1,220	5.4	1,220	4.9	5,200	25.0
1/2		1,530	12.2	1,150	4.6	760	3,0	1,680	20,2	1,220	5.4	1,070	5.1	1,070	4.7	4,500	23.4
5/8		1,220	11.7	910	4.0	610	2.7	1,350	18.9	980	4.7	850	4.8	850	4.1	3,600	21.6
3/4		1,010	10.5	770	3.7	510	2.4	1,120	17.9	810	4.2	710	4.3	710	4.0	3,000	19.2
1		760	9.1	650	3.9	380	2,3	840	15,1	610	3.7	530	3.2	530	3,2	2,200	17.6
	a"					1.5	5D (Lo	ng 2.0	D)					1,0D (Lo	ng 2,0D)	1,5D (Lo	ng 2.0D)
Depth of Cut	a	0.1	D (Lor	ng 0.0	5D)	0.05D (Lo	ng ().02D)	0.1	D (Lor	ng 0.0	5D)	0.1D (Lor	ng ().05D)	0.05D (Lo	ong 0.2D)	0.2D (Lo	ng 0.1D)
	Н		0.2	5D		0.1	5D		0.2	25D		0.1	5D	0.0	5D	0.2	25D

1) Mill using coolants,

2) Adjust milling condition when unusual vibration or sound occurs.

Nachi Materials

- <u>HSS</u> = High Speed Steel
- General Purpose
- Symbol= HSS

ΝΛCΗ

EX's – L231, L261, L211, L215, & L271

- <u>HSSCo</u> = Cobalt High Speed Steel
- HSS With Added Cobalt for Wear Resistance
- Symbol=

EX's – L6231HD, L6450, L6485, L6406, L6484, L6486, L6488, L6403, L6402, L6404, L6231X, L6211X, L6367X, L6303X, L6231, L6233, L6230, L6213, L6210, L6211M, 6367, L6303, & L6307

Nachi Materials

- <u>Carbide</u> = Tungsten Carbide
- Compacted & Sintered 3 X Stiffer than Steel
- Symbol=

ΊλζΗ

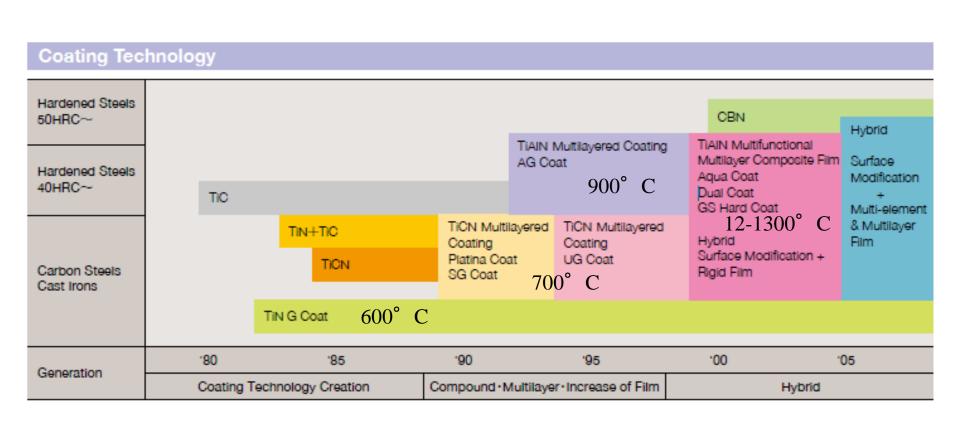
EX's – L9382, L9384, L9386, L9398,

L9422, L9399, L9423, L9408, L9321, L9322,

L9324, L9338, L9366, L9368, L9340, L9332, L9330,

L9378, L9302, L9390, L9360, L9261X, L9265X, L9271X,

L9275X, L9263X, L9267X, L9273X, L9277X, L9251X, & L9221X


Coatings Advantages

- Better Wear Resistance
- Better Toughness

ΝΛ

- Better Heat Resistance
- Better Lubrication

NACHI Coatings Development and Approx. Temperature Max

ΝΔΟΗί

Nachi Coatings

- <u>SG-Coating</u> = TiN + TiCN (Multi Layer Coating)
- Service Temperature= 700° C
- Color= Gold YelLow
- Symbol= EX – L9261X, L9265X, L9271X, L9275X, L9263X, L9267X,

L9273X, L9277X, L9251X, L9221X, L6231X, L6211X, L6367X, & L6303X

- <u>AG-Coating</u> = TiALN (Multi Layer Coating)
- Service Temperature= 900° C
- Color= Violet-Gray
- Symbol= AG

EX – L6485, L6406, L6484,

L6486, L6488, L6403, L6402, & L6404

Nachi Coatings

- <u>X's-Coating</u> = TiALN (Multi Layer Coating) for End Mills
- Service Temperature= 900° C
- Color= Violet-Gray
- Symbol= X's

NΔCH

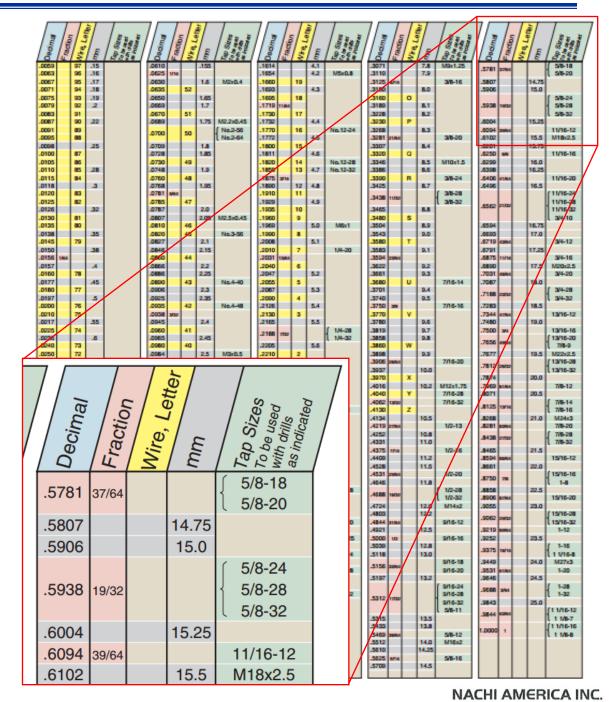
EX – L9408, L9321, L9322,

L9324, L9338, L9366, L9368, L9340, & L9332

- <u>GS-Coating</u> = TiALN + Al-Ti-Cr (Multi Layer Coating)
- Service Temperature= 1100° C
- Color= Violet-gray
- Symbol=GS

EX – L9382, L9384, L9386,

L9398, L9422, L9399, & L9423


Nachi Coatings

- <u>DLC-Coating</u> = Diamond Like Carbon
- Service Temperature= 600° C
- Color= Black
- Symbol=DLC

EX – L9330, L9378, L9302, L9390, L9360, L6231HD, & L6450

MACHI Metric Conversion Table

- Last Page of the Nachi Catalog
- Can use formula
 - mm/25.4= English
 - English X 25.4=
 mm

NACHi Variable Helix-Variable Index End Mills

- Genac VGX End Mill
 - High Performance
 - Carbide
 - AG Coated
- Variable Helix-Variable Index Reduce Vibration
 - Faster Feed Rates
 - Improved Surface Finish

Drill/End Mill Selection Tool

Item Search -END MILLS-

NΔCHİ

BACK Item Search Top > Endmill Size Specification Endmills Size Specification * Sections marked * must be filled in EDP number EDP Search Clear Size * Search \odot Inch Clear mm 1/32 -Length Style All Length Style -Number of All No of Flutes -Flutes Workpiece All Workpiece Material Ŧ Search Clear Material BACK

NACHi

Hi-Performance End Mills

ΝΔϹΗΪ

Hi-Performance End Mills Product Review

- X's-Mill Geo
- X's-Mill Slot
- GS-Mill Hard & GS-Mill Hard Ball
- Mold Meister Ball
- AG-Mill Roughing/AG-Mill Heavy
- DLC -Mill
- Standard High Speed End Mills

ΝΔΟΗί

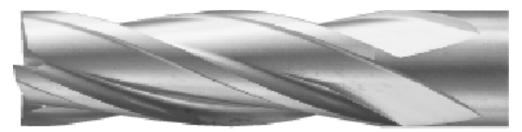
Geo X-Mill

Features:

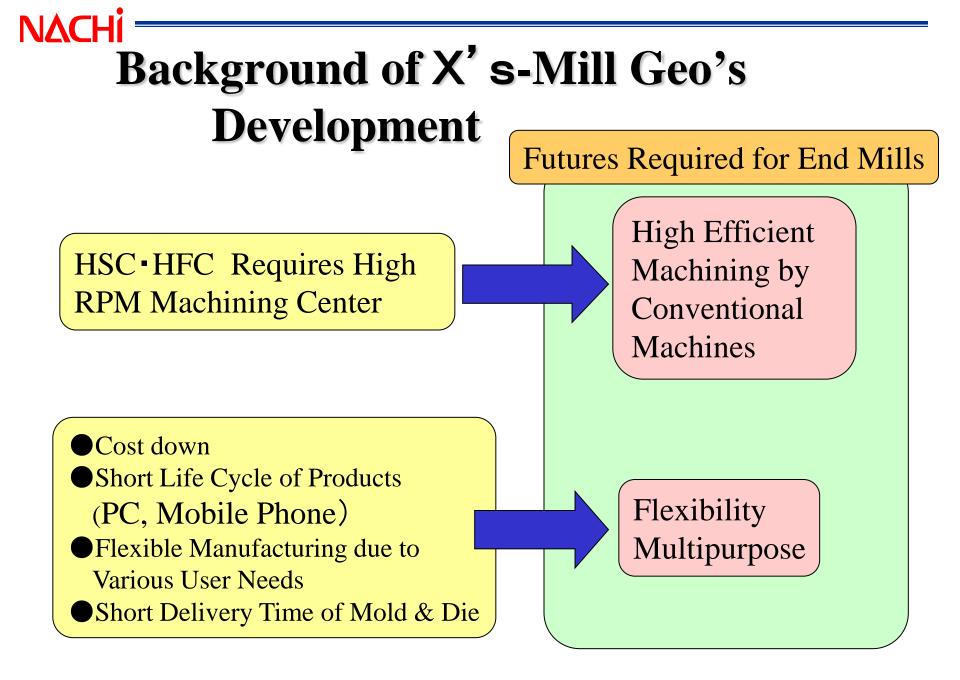
- Unique Flute Geometry Resulting in Fast Groove Milling and Excellent Chip Evacuation
- Tough Micro Grain Carbide and TIALN Coating Equals Longer Tool Life
- Multifunctional End Mill for High Speed Roughing and Precise Side Milling

Work Materials:

 Carbon Steels, Alloy Steels, Pre-Hardened Steels, Stainless Steels, Nickel Alloys, Titanium Alloys, Cast Irons


Feature of Geo X Mill

Geometry of Geo X Mill


ΝΔΟΗ

Geo X Mill Design

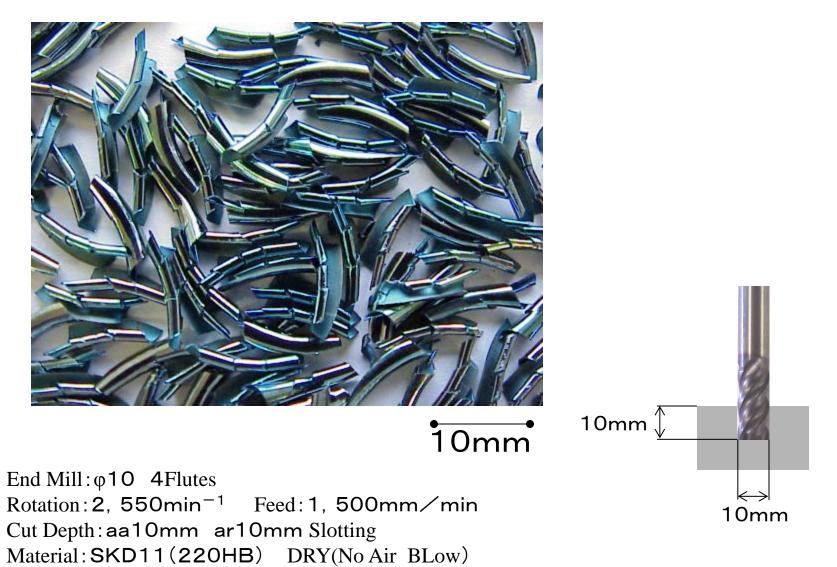
Conventional End Mill Design

ΝΔΟΗί

Example

End Mill: φ10 4Flutes Rotation: 2, 550min⁻¹ Feed: 1, 500mm/min Cut Depth: aa10mm ar10mm Slotting Material: SKD11(220HB) DRY(No Air BLow)

Critical Feed Test


 \leftrightarrow

10mm

10mm ()

NACHi •

Chip Shape

Difference of Flute Geometry

X 's-Mill Geo

ΝΔΟΗί

ΝΔΟΗί

X's Mill Geo Series

- X's-Mill Geo, Geo Radius
- X's-Mill Geo Ball
- X's-Mill Geo Micro Ball
- X's-Mill Geo Long Shank
- X's-Mill Geo Slot

NACHI-FUJIKOSHI CORP. NACHI AMERICA INC.

ΝΔCΗί

©: Stable Milling

X`s-Mill Geo

High Speed Machining Wide Range Materials

Wide Range of High Speed Milling from Carbon Steel to Hardened Steel - Thanks for the Best Combination with Multilayered TiAlN Coating Film and Tough Carbide Substrate

Easy Chip Control

High Speed Grooving, and Drilling with the 4 Flutes Mill Thanks to NACHI's Unique Flute Geometry

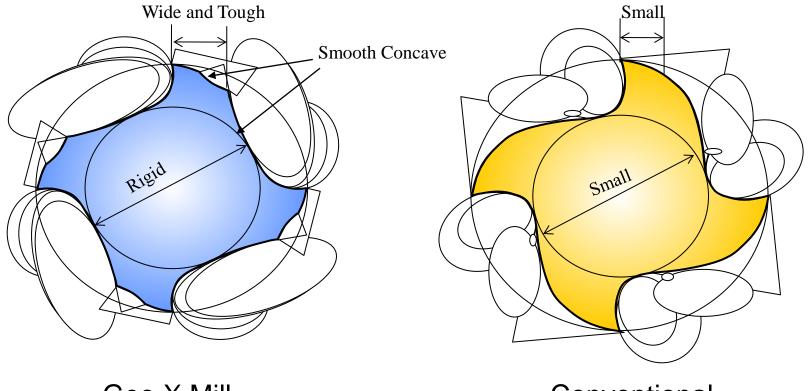
Ridged and Tough

Unique Flute Geometry and Wide Land on the Cutting Edge Tough Cutting Edge Extremely High Milling Speed and Excellent Finishing Surface

X's Mill Geo	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Δ	Δ
Competitor A	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	0	Ο	\triangle	\triangle	\triangle	×						
Competitor B	\bigcirc	\bigcirc	\bigcirc	Ο	0	Δ	Δ	Δ	Δ	×								
	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200
Feed(mm/min)																		

 Δ : Chipping X: Broken

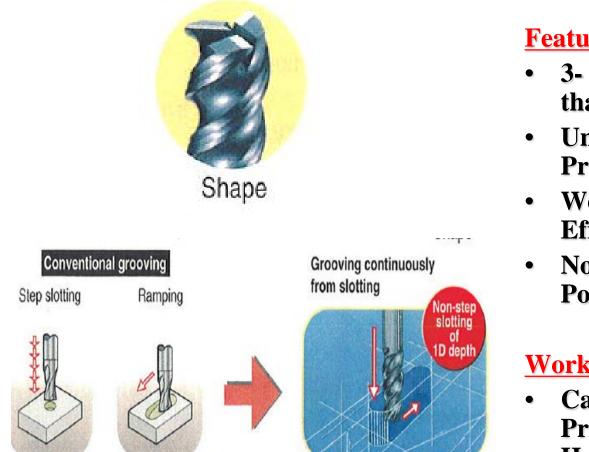
Conditions End Mill : 10mm Material : SKD11(180HB)


O: Milling

Speed : 80m/min Coolant : Dry Smooth FLowing Chips

Feature of Geo X Mill

Cross Section of X's Mill Geo

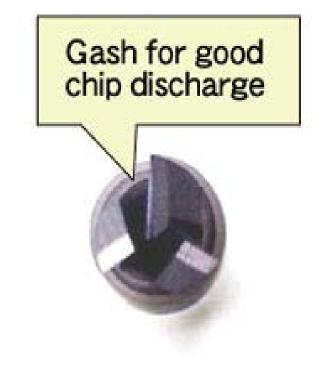

Geo X Mill

NΔCHİ

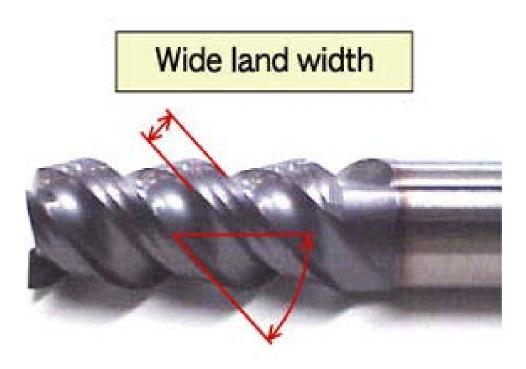
Conventional

NACH

X'-Mill Geo Slot


Features:

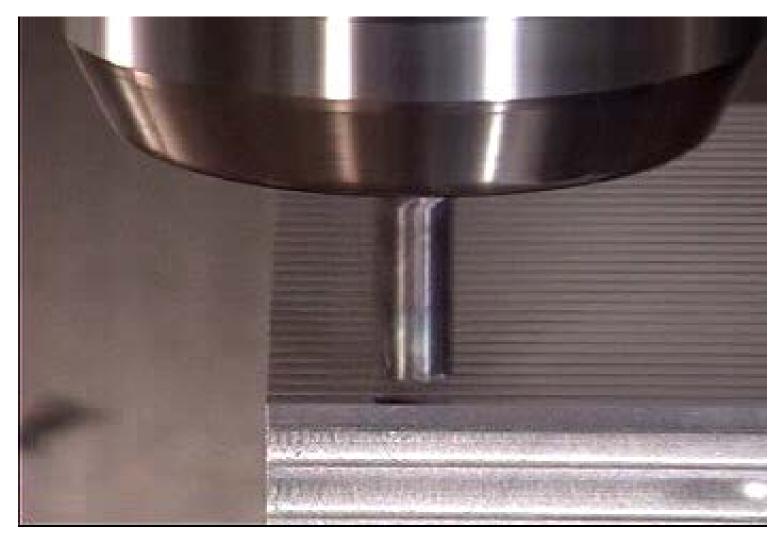
- **3-4 Times Faster Grooving** than Conventional End Mill
- **Unique Design of End Teeth Provide Excellent Chip FLow**
- Well Balanced 3-Flutes make **Efficient Slotting Possible**
- Non-Step Slotting of 1D Depth Possible


Work Materials:

Carbon Steels, Alloy Steels, Pre-Hardened Steels, Hardened Steels, Stainless **Steel, Nickel Alloys, Titanium Alloys, Cast Irons**

Geo Slot Geometry

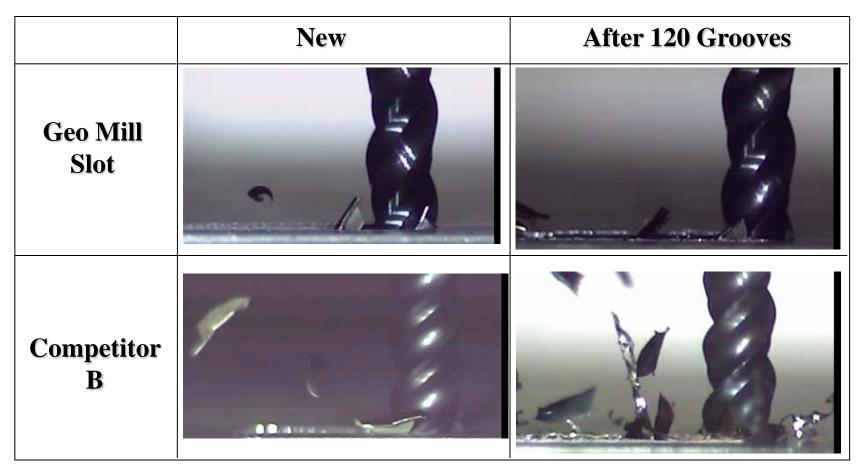
NΔCH



3 flutes for drilling

High helix for sharpness & good chip discharge

Slotting Milling by Geo Slot


ΝΔΟΗί

Smooth Chip Evacuation

ΝΔCΗ

(Material: Carbon Steel-Thin Plate)

Geo Mill Slot Chip Evacuation Good Even After 120 Grooves Milling

ΝΔCΗί

GS Mill Hard

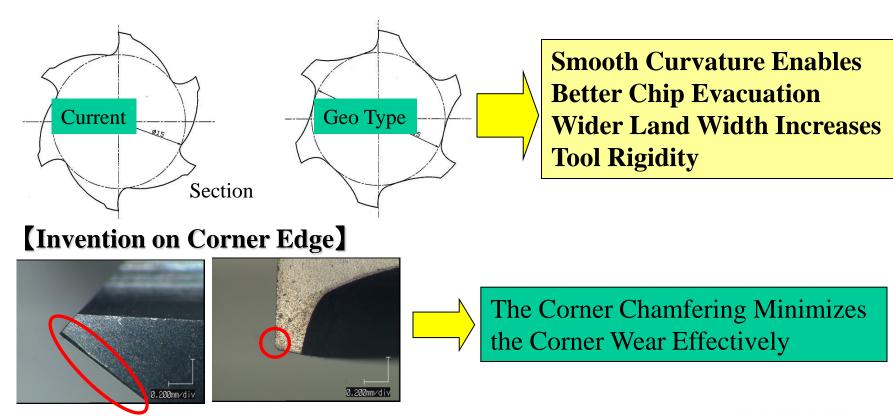
GS Mill Hard

Milling Up to 70HRc

<u>Features:</u>

- High Speed Machining of Hardened Steels
- For Machining Hardened Steels up to 70 Hrc
- Nachi's New "GS Hard Coat" (Al-Ti-Cr Based Coating)
- 3 Times Tougher Anti-Oxidization at 1,100° C

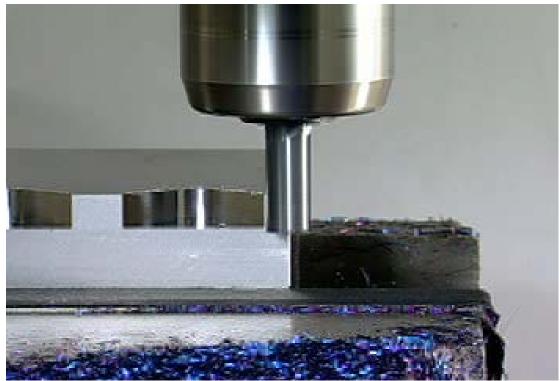
<u>Work Materials:</u>

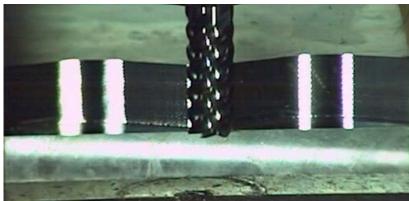

 Pre-Hardened Steels, Mold Steels, Hardened Steels H13, D2, M3 (45-60 Hrc)

ΝΔΟΗί

Features of GS-Mill Hard

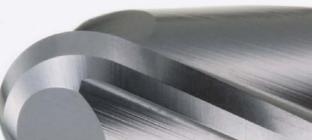
•"Geo" Flute Geometry to Increase Both Chip Evacuation and Higher Rigidity


- Corner Chamfering to Minimize the Corner Wear
- New "GS Hard" Coating to Dissipate Heat and Smoother Chip Evacuation
- Ultra Micro Grain Carbide for Better Abrasion Resistance


Performance of GS-Mill Hard

ΝΔCΗ

Movie SKD61(53HRC) Ultra High Speed


Dia: ϕ 10 6Flute Dry V:800m/min F:10, 000mm/min aa:10mm ar:0.2mm Material:SKD61(53HRC)

ΝΔCΗ

GS Mill Hard Ball

One Pass Grinding from Ball Nose to Outer Tooth

Durable Tool Life

•Newly Developed "GS Hard Coating" with High Resistance to Wear and Lubrication Reduces Friction

High TRS by Ultra-Micro Grain Carbide
Protects Chipping as Well as Wear
Excellent Work Surface

Accurate Surface

The Ball Nose Accuracy is Applied by +3∼−7µm


• The "One-Pass" Grinding Guarantees Excellent Surface Even on the Perpendicular Wall

Work Materials:

Pre-Hardened Steels, Mold Steels, Hardened Steels H13, D2, M3 (45-60 Hrc)

ΝΔCΗί

High Performance Milling SFM=750 RPM=9500 Feed= 80 ipm (End Mill R4, Mold Steel, 53HRC, R4, Radial Depth= 4mm, axial Depth=.025))

ΝΔΟΗί

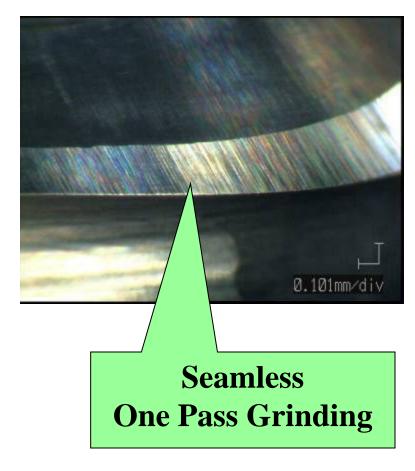
For Mold & Die

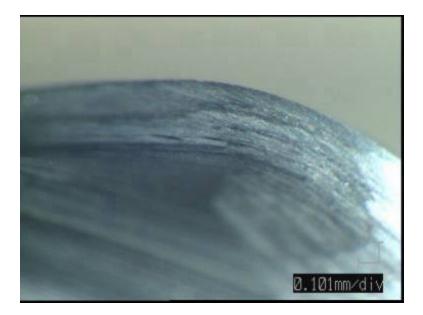
"Machining to Zero" with the Mold Meister Ball End Mill

Features of Mold Meister Ball

ΝΛCΗ

Features:

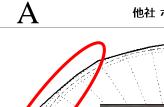

- Precision Carbide End Mill Best Suited for "Machining to Zero"
- Seamless Ball Tolerance Drastically Reduces Polishing Time
- High Precision Ball Tolerance ±3µu, Ball Accuracy Range 180°
- Highly Suitable for Mold and Die Work

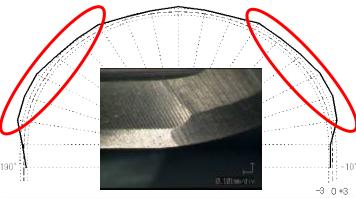

Work Materials:

 Pre-Hardened Steels, Mold Steels, Hardened Steels H13, D2, M3 (45-60 Hrc)

ΝΔΟΗί

Appearance of Mold Meister Ball

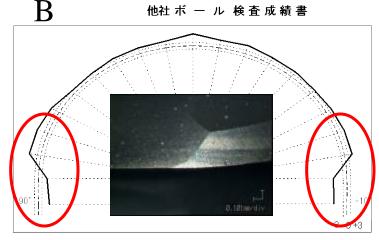



NΔCH

Actual Measurement of Competitor's Accuracy

Competitor A R1 Nominal: $\pm 5\mu m$

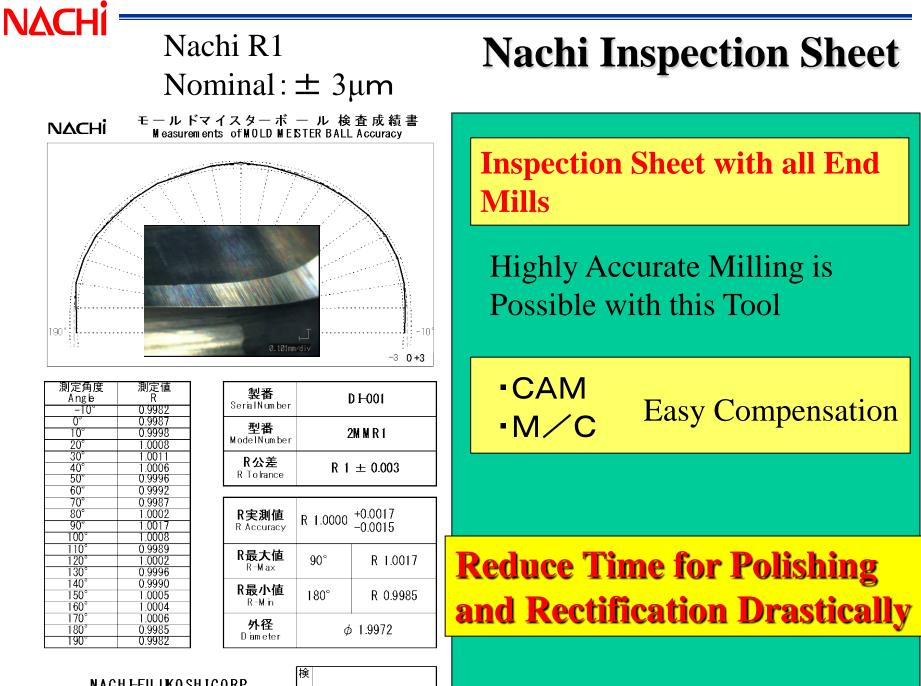
他社ボール検査成績書



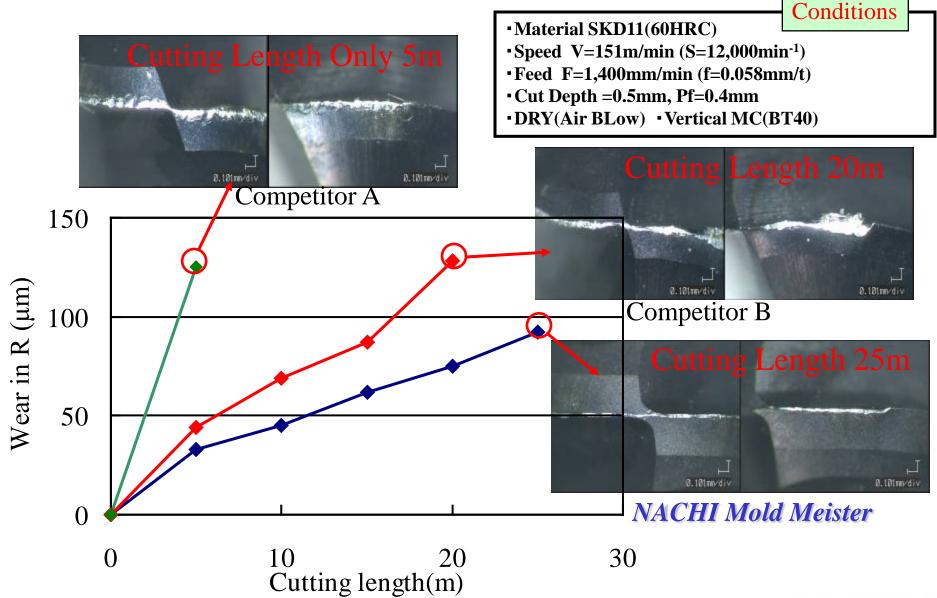
測定角度 Angle	測定値 R
-10°	0.9971
0.	0.9985
10°	1.0058
20°	1.0085
30°	1.0082
40°	1.0058
50°	1.0050
60°	1.0067
70°	1.0031
80°	1.0034
90°	1.0049
100°	1.0029
110°	1.0025
120°	1.0051
130°	1.0041
140°	1.0043
150°	1.0076
160°	1.0077
170°	1.0073
180°	1.0013
190°	1.0014

製番 SerialNumber	
型番 MrodelNunnber	
R公差 R To h ance	R 1

R実測値 R Accuracy	R 1.0000 +0.0085 -0.0015				
R最大値 R-₩ax	20°	R 1.0085			
R最小值 R-Min	0°	R 0.9985			
外径 Diameter	φ 1.9985				


Competitor B R3 Nominal: $\pm 5\mu m$

測定角度 Angle	測定値 R
-10°	2,9894
n°	2,9890
10°	3.0063
20°	3.0060
30°	3.0051
40°	3.0042
50°	3.0055
60°	3.0059
70°	3.0081
80°	3.0072
90°	3.0072 3.0113
100°	3.0062
110°	3.0057
120°	3.0051
130°	3.0035
140°	3.0032
150°	3.0074
160°	3.0092
170°	3.0095
180°	2.9930
190°	2,9910


製番 SerialNumber	
型番 MiodelNumber	
R公差 R Tolrance	R 3

R実測値 R Accuracy	R 3.0000 +0.0113 -0.0110				
R最大値 R-Max	90°	R 3.0113			
R最小値 ^{R-Min}	0°	R 2.9890			
外径 Diameter	φ 5.9804				

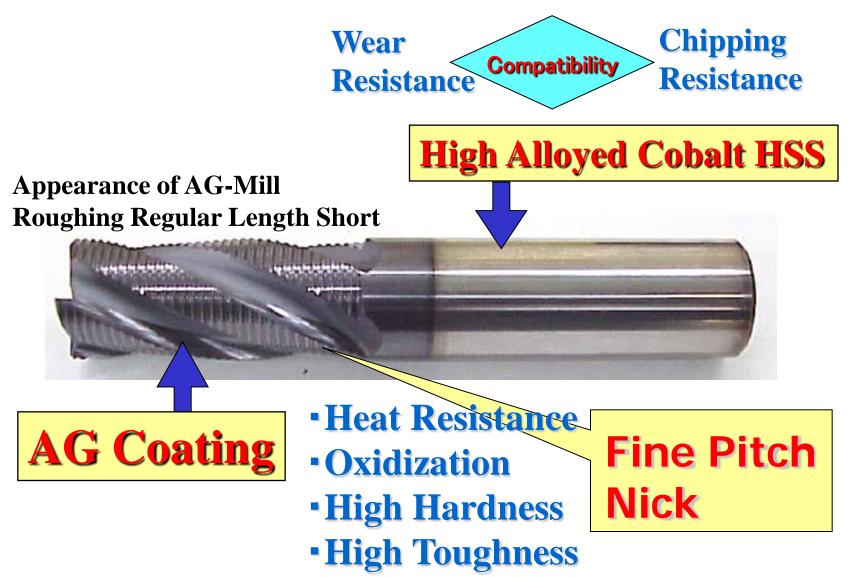
NACHI-FUJKOSHICORP.

NACHi Tool Life Comparison in Hardened Steel Milling

ΝΔCΗί

AG Mill Roughing (For Roughing Operations)

Features:


- Increased Performance in Roughing Operations
- Improved "Chip Breaking" Action with Both Fine and Heavy Tooth Serrations
- Made from HSS-Co Material
- Next Generation TiALN Coating for Improved Performance and Extended Tool Life
- Higher Radial Depths of Cut due to Improved Tool Geometry and Tooth Serrations

AG-MILL Roughing

NΔCHİ

Features of Material and Coating

NACHi —

* Excellent Chipping and Wear Resistance Compared to HSS Co TICN:

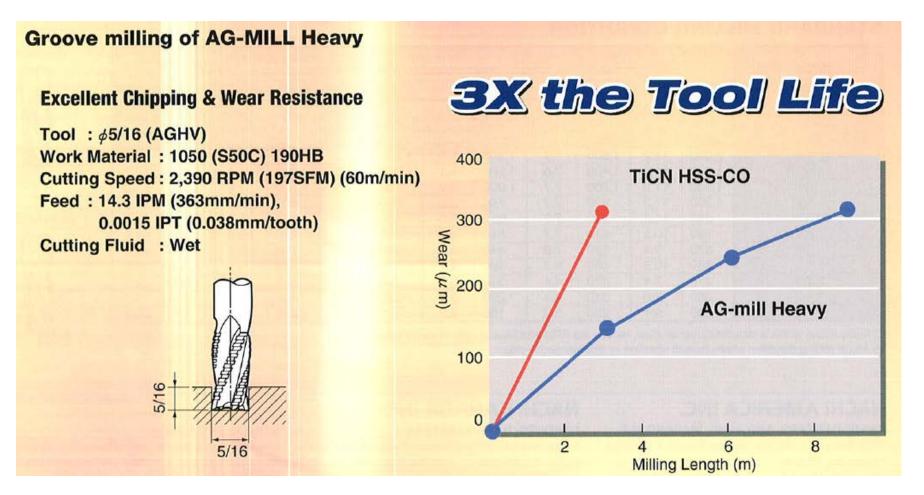
NΔCHi

Work Materials:

- Suitable for Semi-Finish Operations in Structural Steels, Carbon Steels, Alloy Steels, Molds Steels, Stainless Steels, Nickel Alloys, Titanium, and Cast Iron
- Available in Fractional & Metric Sizes
- Fractional Size Range: 1/4"- 2"
- Metric Size Range: 6mm 50mm

ΝΔΟΗί

AG Mill Heavy (Roughing & Finishing)


Features:

- Increased Performance in Semi-Finish Operations
- Made from HSS-Co Material
- Next Generation TiALN Coating for Improved Performance and Extended Tool Life
- Higher Radial Depths of Cut due to Improved Tool Geometry and Tooth Serrations in Semi-Finish Operations
- Excellent for Roughing in Nickel Alloys, Titanium, Inconel and Stainless

ΝΔCΗί

* 3X the Tool Life than Regular TiCN HSS-Co End Mills.

NΔCHi

Work Materials:

- Suitable for Semi-Finish Operations in Structural Steels, Carbon Steels, Alloy Steels, Molds Steels, Stainless Steels, Nickel Alloys, Titanium, and Cast Iron
- Available in Fractional & Metric Sizes
- Fractional Size Range: 1/4"- 2"
- Metric Size Range: 3mm 50mm

ΝΔΟΗί

DLC Mill for Aluminum

Dry Milling of Aluminum

DLC (Diamond Like Carbon) is an Amorphous Material with High Hardness and Low Friction and has Similar Characteristics to Diamond Coating

Excellent Chip Evacuation

Dry Machining and Extra Long Tool Life is Achieved with DLC Coating

Materials

Aluminum 1060, 6061, Aluminum Alloys 4032, 5052, 7075, and Copper Alloys.

Series

L6231HD 1/8 to 1", 2 Flute, HSS-Co L9330 1.5 to 20mm, 2 Flute, Carbide

Genac VGX End Mills

Variable Helix-Variable Index

NACHi Variable Helix-Variable Index End Mills

Genac VGX End Mill

- High Performance
- Carbide
- AG Coated

Variable Helix-Variable Index Reduce Vibration

- Faster Feed Rates
- Improved Surface Finish

Materials

• Carbon Steel, Medium Alloys, Stainless Steel, Titanium, Thigh Tem Alloys, and Cast Iron

Series

- L6000 1/8 to 1, 4 Flute, Carbide
- L6100 1/4 to 1, 4 Flute, Carbide, Extended Length
- L6200 1/8 to 1, 4 Flute, Carbide, Ball Nose

Thank You